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ABSTRACT /1 /5

This study deals with fully developed laminar forced convection in
rectangular channels that are heated on the broad sides. The analysis
determines the effect of peripheral heat conduction within the heated
walls on the wall temperature distributions. The unheated short side
walls are assumed nonconducting. The heat conduction within the broad
walls was formulasted In terms of an integral equation and coupled with
the convective energy equation within the fluid. Solutions are given
whéfe,the heating extends over the entire width of the broad side, is
removed from the corner region, or extends beyond the corner into the
side wall. Transverse wall conduction produced substantial decreases
in tﬁe peak wall temperature and in the temperature gradients along the
long side. For channels having the same heat generation per unit length,
an aspect ratio of 2C or larger yielded the minimum peak temperatures
for any value of the thermal conductivity. /\’1 UTHER

NOMENCLATURE

Al Fourier coefficients defined by eq. (10)
A,

coefficients defined by eq. (1lb)
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- half-length of the short side of a rectanguler duct
b half-length of the long side of a rectangular duct
Cn integral coefficlents given by egs. (14) and (17)
cP specific heat of fluild at constant pressure

c half-length of heated region on broasd sildes

E, Fourler coefficients given by egs. (16) and (20)

e distance heated reglon extends into side plate

G* quantity defined in eq. (A2)

K wall-to-fluld conduction parameter, wkw/akf

thermal conductivity

P static pressure

Q total heat-transfer rate to fluld per unit channel length

qg heat generation rate in wall per unit area

R,»S, Fourler coefficients defined by eqs. (AS5) and (A7)

T temperature

u local fluld velocity

u integrated mean fluid velocity

W thickness of channel wall

X dimensionless coordinate, x/a

X coordinate measured from center of duct in a direction parallel

to short side

Y dimensionless coordinate, y/b
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Yy coordinate measured from center of duct in & direction parasllel
to long side
Z coordlinate measured along duct length
r aspect ratio of rectangular duct, b/a
8 dimensionless temperature, 4keT/Q
vl absolute fluid viscosity
v coordinate pertaining to normael derivative
p fluid density
Subscripts:
b integrated mean value
f fluid
L Laplace solution
P Poisson solution
W wall
INTRODUCTION

It is common in many nuclesr reactors to utilize fuel assemblies in
which a series of paralle] fuel bearing plates are closely spaced and
supported along their edges by unfueled gide plates (fig. 1(a)). This
array forms a set of rectangular channels through which the coolant
flows. Most of the heat is generated in the fueled portion of the broad
Plates with a small amount being produced by gamms heating in the un-
fueled portion and side plates. A typical fuel plate is com~

posed of a thin layer of uranium fuel pressed between two thin metal
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plates. Current practice is to have the edge of the fuel loading termi-
nate a specified distance away from the side plate (fig. 1(a)). The
reason for retalning a short unfueled wldth adjacent to the corner 1Is to
avold transferring heat directly into what is belleved to be a region of
poor convectlon resulting from low velocities or the presence of a lam-
inar region when the core of the fluld is turbulent.

Before a reactor is operated at its design power level it is neces-
sary to know wlth some degree of accuracy the wall temperature distribu-~
tions in any cooling channel. In particular, it is important to know the
magnitude and location of the maximm wall temperature since excessively
high values can lead to fuel assembly failures and serious reactor damage.

The wall temperature distribution in & cooling channel is influenced
by many factors such as the coolant velocity, distribution of heat gener-
ation along the walls, channel aspect ratio, thermsl conductivity of the
wall material, and width of the unfueled region in the fuel plates. Many
of these factors are interrelated in a complicated manner, and, to deter-
mine the combined effect of certain ones, i1t is necessary to analyze sim-
plified models that retain the essential features of the general problem.

Some studles of forced convection in rectangular channels have been
reported in the literature. Cheng [1] obtained an analytical solution for
laminar flow in a channel that was uniformly heated on all four sides,
and evalusted the wall temperatures for aspect ratios of 1, 2, and 4.

Sparrow and Siegel [2] used variational methods to analyze channels with
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uniform heating on all four sides, and also obtalned & solution with uni-
form heating on only the two broad walls for an aspect ratlio of 10.
Savino and Siegel [3] provided the analytical solution for the case in
which the sides of the channel are uniformly heated, but the heat flux
on the short sides 1s an arbltrary fraction between O and 1 of the flux
on the broed sides. Their analysls showed that the peak wall tempera-
tures were lowest when all the heat was transferred through the broad
walls only, and the aspect ratioc was increased to about 10 or 20. Be-
yond 20 there was no additional temperature decrease of significance.
In ref. 4, a situstion was analyzed wherein the heating, which could be
uniform‘or nonuniform, occcurred only on the broad walls but was removed
various short distances from the side wall. As the wildth of the un-
fueled region wes increased, the pesk temperature shifted from the cor-
ner to the center of the broad wall.

For all the cases mentloned, the walls were assumed to be noncon-
ducting so that the heat was convected awsy at the local position where
it was generated. In an actual channel, the wall would be conducting
so that some of the heat generation would flow peripherally within the
wall and tend to equalize the wall temperature distribution. Eckert and
Low [5] analyzed numerically the fully developed turbulent heat transfer
in isosceles-triangular and rectangular (aspect ratio, 5) passages to
determine the effect of peripheral conduction in the walls when the walls

were heated internally. The results showed how the wall temperatures
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decreased and became more uniform as the ratio of the wall to fluid ther-
mal conduction was increased, but the additional effect of aspect ratio
was not treated. Baumeister and Rellly [6] studied, by a finite differ-
ence method, the heat transfer in the corner region of a rectangular
cooling channel for a specific set of conditions. A single value of the
heat-transfer coefficlent on each wall was assumed. Although conduction
in the wall was included, the results were too limited to provide general
conclusions on the effect of wall conduction.

In the present paper the combined effects of peripheral wall conduc-
tion, aspect ratio, and width of the unheated regilon in the cormer will
be examined. To simplify the analysis, it is assumed that only the broad
heat-generating sides are conducting and that the short side walls are of
insulating material with zero conductivity. Dimensionless wall tempera-
ture distributions are evaluated for several aspect ratios and spacings
of the fuel loading away from the corner. Some cases are also glven
where the fueled reglon extends beyond the corner and into the side
plates. The dependence of the maximum wall temperasture on the aspect
ratio is shown for all values of the wall conductivity.

ANALYSIS

For this study, the typical fuel assenmbly cooling passage shown in
fig. 1(a) has been approximated by the model in fig. 1(b). A half-
thickness of the fuel plate has been replaced by & homogeneous conduc-

ting plate with internal heat generation over a width along the broad
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slde equal to that of the fuel loading. The small amount of gamms heat-
ing generated in the unfueled reglons of the walls is neglected. How-
ever, because the entire broad wall has & nonzero thermal conductivity,
heat 1s conducted into its unfueled region and then transferred to the
fluid 1n the corner. The broad walls are assumed to be sufficilently
thin so that the temperature 1s constant through the wall thickness and
equal to the local fluld temperature at the wall. The short side walls
are assumed to be of insulating material having zero thermal conductiv-
ity, which idealizes somewhat the practical situation where there is a
poor thermal bond at the jolnt between the fuel plate edge and the side
plate. The assumptions are made that the flow i1g laminar and that the
fluld has constant properties. The region under study is restricted to
axial locatlons sufficiently far from the channel entrance so that the
velocity and temperature profiles are fully developed. In order that
the temperatureé can be compared on an equivalent basis, the total heat
generated per unit channel length 1s kept the same for all aspect ratios
and confilgurations of the heat-generation distribution 1In the walls.

Since the convectlve term in the energy equation involves the veloe-
ity distribution, the first step in the analysis 1s to speclfy the veloc-
ity varlation over the cross section. With the assumption of constant
fluid properties, the velocity distributlon can be obtailned independent
of the energy equation since the viscoslty is not influenced by the

temperature distribution.
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Velocity distribution. - For fully developed steady laminar flow,

the momentum equation in rectangular coordinates is given by

2 2
(B 2y 0
dx oy

The solution for u(x,y) is available in Knudsen and Katz [7], page 101
as well as in a number of other references, including some dealing with
the stress function for torsion of a rectangular bar. The expression
used here has been placed in a form especlally suitable for evaluation

by a computer:

E%l - Egr(l-Y) - E%I(I+Y)
1-3%x°+ é% ('l; & <+_e cos ngx
n - on - L +te nmy

u_ n=1,3,5;. ..
T

2 _ 128 1 {1-eW (2)

S Yns n° \1 + ™D

n=l, ,5,-.-

Energy equation. - The energy equation in the fluid expresses a bal-

ance between the energy conducted into and convected sway from & differ-

entlal volume:

2 2 2
3T 21 , 3% . 3T

pcu = Kf (3)
P 3z 3% 3% 22

Viscous dissipation has been assumed negligible. For steady conditions

ng per unit channel length Q must be carried away by
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convection. Thls leads to the overall energy balance
ssbpogi o2 = g
e o =
LY

For fully developed conditions, the temperature profile retains the same

shepe for all z so JT/dz = OT, /dz, and, therefore,

JT Q 1 _
oz 4abpcpu dz2
Substituting into eq. (3) gives
2 2
8 u_ o°T , 37T 2, . L+ U
Zab o -\ 32 52 7o = 3% - (4)

where the temperstures T have been nondimensionalized by Q/ékf to pro-
duce 6. This Poisson equation, with u/G given by eq. (2), is to be
solved subject to boundary conditions that account for peripheral heat
conduction in the broad duct wall.

Cases I(a) and (b} - Heating extends part way and all the way to the

corner, respectively. - With reference to fig. 1(b), all the cases con-

sidered herein will have equal heat generation per unit volume on both.
broad sides, and the fuel will be distributed symmetrically about the
x-axls. Hence, from symmetry, only one quarter of the channel cross
section need be considered, and the upper right quadrant is selected as
shown in fig. 2. For case I, the heating extends from y =0 to y=-c¢
where o <b; thus, the energy source can extend all the way to the cor-

ner or be removed & distance d away from the corner.
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As discussed in ref. 8, if, for a given geometry, a solution of
Poisson's equation is known for simple boundary conditions, then more in-
volved boundary conditions can be accounted for by superimposing solu-
tions of Laplace's equation. An analytical solutlon of Polsson's equa-
tion is available in ref. 3 for the case where uniform heating extends
on the broad wall from y = O to b, there 1s no heating in the side
wall, and both walls are all nonconducting. This solution is called 6p

and satisfies the equation

1l u
VZGP—Eﬁ (5)
* with the boundary conditions
o6
0<x<a = 0,b P-o 56
X% y ’ 5 (5a)
36p
x = 0, 0<y<bd — =0 (5b)
- ox
08
x = a, 0<y<b L=1 (5¢)
- ox b

This Poisson solution, which also satisfies eq. (4), accounts for the
total heat addition to the channel by virtue of eq. (S5c) so any solutions
that are added to it must not add or subtract any additional net amount
of heat.

We now seek a solution of the energy eq. (4) in the form

6 = 6p + 6y, (6)
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If this is substituted into eq. (4) and eq. (5) is then utilized, it is
found that eL satisfies the Laplace equation

vzeL = 0 (7)
The GL solution will be used to adjust the 6p solution to account for
the transverse conduction within the heated wall. The boundary condi-

tions on 6 are that the normal derlvatives along three sides of the

quadrant are zero.

0<x<a, v = 0,b 9 - o (68)
x =0, 0<y<b ¥ .o (6b)
- - ox

Along the heated long side, in the fueled reglon a heat balance on a wall

element as shown in fig. 2 yields the equation

2
x=8, 0<y<eg, k oT . q_ + wk o°T
_— - T 3x g W Byz

With q = Q/4c, this has the equivalent form

2
% 1, ., 5wd%

— =t (60)
dx ¢ ke ay2
In the unhe&ted regilon of:the broad side, the heat balance yields
Ky N2
x=8, ¢c<y<b, _B__Q__W_E_Q__Q (6d)

The boundary conditions on 6r, are found by noting that 6y, =6 - 6p
and hence, using egs. (58) to (5¢) in conjunction with egqs. (6a) to (6d)

glve




<x < 0,b aéb 0
0<x<as, y=0, 5 - (7a)
BGL
x = 0, 0<y<h 5 =0 (7b)
06 k2
L 1 wo#e 1
X = a,, 0O<y<ec &'-—C*LWE;'B—;--]D (7c)
96
x = &, c<y<b 5—-&= —k'g'é*g-% (7d)

(7) with boundary conditions of egs. (7a) to (7d) can be satis-

fied by a product solution of the form

o= ) e () o (3) R

n=l 3Bgees
(8) immediately satisfies the conditions (7a) and (7b), and condi-
tions (7c¢c) and (7d) remain to be satisfied by proper evaluation of the
Fourier coefficients An Eg. (8) is differentiated with respect to x,
equated to the boundary conditions at x = a, and then expa.nded in a

Fourier seriles to glve .

0]
b c
/\ é& éi'?‘l - ']-\"\ cos (Eﬂ\ dy +/’\ L cos (2"1\ dy (9)
J, sy mie g e
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The integrals are carried out with the first integral on the right side

being integrated twice by parts. After notation of the fact that
’ o6 = 0, this yields the expression for A :
oy n
X=8,
y=b

; : -
b sin nmey - Ky /nx
nne b kf (b

A = . (10)
n nx nnea.
2N ginh(2n&
> s nh( o )

For large n, the cosh and sinh terms in eqs. (8) and (10) each be-
come very large; hence, it is more convenient numerically to form their

ratio in.terms of exponential functions. This leads to the result

o0 B 7
- ZH(1-x) - EX(1#x)
6, = L cos (nnyY) | = te T (11a)
L An _ 2nx
Y
1l -e
n=1,2,3,... - -
where
1
- 2 b nie ns
= — gin (=} - 2K { = p(1L,Y) cos (nxY) 4Y 11b
h= gt (b) (Y (1,Y) cos (nx¥) (110)
0
and
W]
<=
ks

the wall conduction parameter.
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The coefficient Kn contains the unknown quantity 6(1,Y) which is
the dimensionless wall temperature distribution along the broad side.
Out next objective is to determine the Kh in terms of known functions.
Eq. (1la) is evaluated along the broad side of the channel by letting

(1,Y) on the left

X=1, and 6(1,Y) - GP(l,Y) is substituted for 6

slde to, give

o]
- 1+ e-2nn/r
G(l,Y) - GP(l,Y) = An cos (nnY) W (12)
n=l,2,3,...
A is then substituted from eq. (11b) to obtain
n
o0
-ZnK/Y
) c l+e
0(1,Y) - GP(l,Y) = s~ sin (nn E) cos (nxY) iy
(nr) l-e
n=1,2,3,..
® 1
-2nn/vy
+ e’
- % Knn 6(1,¢) cos (nnt) dg¢| cos (nnY) tre (13)

2
-ena/y

n=1,2,3,... 0

Eq. (13) is clearly an integral equation for the broad wall temperature

distribution 6(1,Y), and its solution will lead to an expression for

An in terms of known guantities. Thils particular form of integral

equation can be solved by applying a procedure given in ref. 9. First,

1
we note that the integral between definite limits V/ﬁ 6(1,&) cos nxnt d¢
0
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is a constant for each n. These constants are unknown because they in-
volve the unknown 6(1,¢) function. Define
. 1
Cn EL//\ 6(1,t) cos nxt dg (14)
. 0

(13) is next multiplied by cos (mnY) end integrated from Y = 0 to

1 to give
‘ 1 y
| 2mn Y
| Cpy - 6p(1,Y) cos (mr¥) aY = —= = % sin (m:r %) -1+—_.é_7_
(mr) 1 - e Cm/Y
0
2mn/y
- Kmx Cp 1+ (15)
T -2mn/y
1 -
Now define

=n f 6p(1,Y) cos (mnY) 4aY (16)
0

The Em coefficients can be directly evaluated by uslng the eP from
ref. 3 as given in the appendix. Eq. (16) is substituted into eq. (15)

and the result solved for Cm:

RN PR (il
mat (m)z c \ b 1 - é-2mn7r
Cu = -2mn/y (17)
L, KoL+ Y

T 1 - e-?'mﬂ/Y

From eq. (11b), by using the definition in eq. (14), Kn can be written as

A, = (mt)z-z-) sin (n:t %) - 2K<%£>Cn (18) |
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The Cn from eq. (17) 1s substituted into eq. (18), and the result is

simplified ta

o, + 2 E ot (2)
(nn)

1+ eﬁznﬂ/r

v + Knn -————f:——jr-
1 -e 2an/yv

By direct integration of eq. (16), with eP from the appendix, the Ej,

7, - (19)

are found as
E n/ 2 R
_.12‘ = - L:.l'_)—— <T + I_. G> “+ —.-I} cosh (1}.{[.>
n 2 T
(nm)™ \

[>]

+ Z (-1 (-1)" DU simh (wrr) (20)
(wr)® + (n)

m=1,2,3,¢..

where G, Rn’ and Sm are given in the appendix by eqs. (A2), (AS), and
(A7). This completes the QL solution as the Eﬁ needed to evaluate
eq. (11) héve now been provided in terms of known functions.

For the ¢ solution to be useful in practice, it must be given

relative to the dimensionless fluid bulk temperature eb, which is de-

fined as
a b a b

/\a f\b
1. u
+ ;ﬁi// \// jE'QL dx dy = 9P,b + eL,b (21)
0 0
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The quantity eP,b is given in ref. 3 so only GL,b must be evaluated
here. Eq. (5) is used to eliminate u/f@ from the definition of 61,5

which glves
a b

61, b i[f opvee, ax dy (22)
o Yo

The second form of Greem's theorem is used o place this in the alterna-

a b
_ BGP BGL
oL,b = <9L 50 - % 57) dsff GPVZGL dh (23)
. 0 0

The second Integral vanishes since VZGL = 0. The filrst integral in-

tive form

volves the normal derivatives of 6p and 67 on the channel bound-
aries. These derivatlves are zero except along the heated side. Here
from eq. (5¢), d6p/dv = 36p/dx = 1/b, and hence, eq. (23) reduces to

b

0
eL,b = QL(a;Y) % - GP(a;Y) BEE dy (24)
5 x=a,

The quantities 6 (a,y) and BGL/BXI are evaluated from eq. (1la) and
x=a ‘

substituted to give
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b %
z : -2nna/b
1 T l+ e
oL, b j/ 1 A, cos <n1r %) “Znwa/o dy
1 -e
0

n=l,2,3,-..

b o
_f ép(a,y) E Kn (—%T-[)cos (_r%tz> dy (25)
0

n=1,2,3, ..

The first integral is zero, and noting the definition of E, in

eq. (16), 6 reduces to

L,b
bL,b = - AnEy (28)
n=l, ,3,o¢o
which cen be evaluated from egs. (19) and (20).
To summarize, the solution is given as @ - 6, = (6p - eP,b)

+ _ ) . .

(6, eL,b)’ where 6p is given in the appendix, ép,p 1s found in
ref. 3, 61, is given by eq. (lla), where A, 1is found from eq. (I9),
and 6y, 1s given by eq. (26), where E, 1s found from eq. (20).

Case II. - Heating extends past the corner into the side wall. -

Fig. 3 illustrates a fuel channel construction where the fuel plates ex-
tend into grooves in the side plates. Because of errors in manufactur-
ing tolerance, the fueled region in a nuclear reactor channel might
sometimes extend beyond the corner, which would tend to raise the corner
temperature. The heat generation supplied by the fuel extending past

y =b will be treated as a sourceythe heat of which is conducted into
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the long side at the corner. The magnitude of this heat source is qge,
where, in this case, the heat generation per unit area qg is related
to the heat addition per unit channel length Q by 4g = Q/4(b + e).
The side plates are agalin assumed to be nonconductors with no internal
heat generation. FEquating the heat source to the peripheral heat con-

duction at the corner gives

Qe T 6 kg
q.& = =W or - = ( 27)
g 4(b + e) kw §y x= §y %= (b + eikww
y=b y=b

The solution proceeds with small modifications in the same manner as

case I. The heat balance for a wall element on the long side now gives

2

oT Q o T
kfé':‘cx=a=4(b+e5+"’kw§;§x=a (28)

Then both of the boundary conditions (7c) and (74) on'the &p solution

are replaced by

%, 1 Ky 32
8 1
¥=8  O0SYZIP  HF CFIETVEIZ b (29)
f Jy

The integral of this condition

b

08 k

L b W 06
- dy = + W -1
ax X=8, b+e kfggx=a

By substitution of eq. (27), the integral reduces to zero, which is a
necessaxry condition for it to be a satlisfactory boundary condition for

Laplace's equation.
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The solution is again gilven by € = GP + eL, but the change in
boundary condition mekes it necessary to evaluate a new A . Eg. (9)

is changed to

0]
b
1 Ky 3% 1 nyy
m*"’i{;az -5 cos(b dy (30)
V" x=a

O‘
Carrying out the integrations and integrating the Bze/Byz term btwice

by parts give

w(ZE)(3) et (32)- w ;;i (1) %’;\m- S f o(e,y) cos () av
y=b 0o

(31)
The expression for the corner derivative,eq. (27) is then substituted
and the result solved for An:
b
n__e Ky (nx)\> nuy
(-1)" s -w-l-{g(-%—> e(a,y)cos(b>dy
An = ' 0" (32)
nx nre.
Fom (52)

By comparison with eq. (10), it is seen that the only difference is the

b nxe . e
replacement of the — sin —— term in the previous A by (-1 T
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The integral equation method of solution 1s carried out in exactly the

seme manner as the previous cage and yields, instead of eq. (19), the

Kn term

e
- )|
2KEy + (-1)" — e
i = & (33)
n 1+ Znn/r -
v + Knn €
-2nn/y

The expression for the bulk temperature GL,b remains the same for
this case as eq. (26). The numerical magnitudes of Kﬁ and GL,b will,
of course, be different from those for case I.

To summarize, the solutlon for case II is

6 -8, =(6p-6py)+ (6, - 6 )
where GP is given in the appendix, GP,b is found in ref. 3 for the
case where only the broad walls are heated, and 61, and. eL,b are
given by eqgs. (1lla) and (26), respectively, with A, from eq. (33) and
En from eq. (20).

Limiting cases for large K or large y. - The limliting case where

K+ o 1s of interest because the conducting heated wall should then
become one of constant temperature. In this section only the wall tem-
peratures will be considered. Flrst consider the broad heated wall

X=1, Y=Y. When K-~ x, the Kn from egs. (19) and (33) become

1
i -

— -ZEQ‘/ Q-Znnff\
E (K = ) = n e

34
n nt \q 4 e-Znn/} (34)
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From eqs. (11a), (26), and (34),

[:Q(J-JY) = e‘t;]K_m = eP(l,Y) - GP,b

o 0 '
2E Z EZ -2nn/y
- 'H:-rE cos (nmY) - 2 i};—l ']:—-_e-'fﬂ;f]— (35)
' 1+ e r
I]Fl,z,s,... n=l,2’5,5-s )

Now, we expand GP(l,Y) - GP,b in a Fourler cosine series

1
ep(1,Y) - 6p,p t[[ep(l,Y) - op,p) aY
0

© 1

+ 2 cos nry’ [6P(1,Y) - GP,}J cos niY dY (36)
n=l,2,3,... 0

But from eq. (16), the second integral is En/n:r. Meking this substi-
tution and then substituting eq. (36) into eq. (35) to eliminate

6p(1,Y) - 6py, glve the simplified expression

2
E -2nn/y
n{l -e
Ly - e =/ [pLD) -opp]ar-2 ) R
o n=l,2,5,-u
(37)

Along the unheated short side a straightforward evaluation glves
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[6(x,1) - eb]K_m = 0p(%,1) - 6p y,

l" axo1) - %’E(m)

+e

+ L (K~ w){B, + ('-l)nl- — (38)
l-ce

T
n=l’ 2’ 3, e s e

To determine the limit for finite K and y = » requires a lengthy
algebralc manipulation that 1s not sufficiently important to outline
here. Hence, only the final result will be given:

(5% - 1) Zis (39)

ml,s’s,‘. -

S2
(L+ K)x

5

@(l:Y) = eb]y‘-—m

where

L = 3L (1.03693)
mo 92

Mm=1y;3,5,440

RESULTS AND DISCUSSION

The channel wall temperature distribution is a quantity of con-

siderable interest to a designer. In figs. 4 to 7 are presented the
wall temperastures as evalusted from the preceding analysis. These tem-
peratures have been nondimensionalized by forming a ratio with Q/ dkp.
Thus, in any figure, the magnitudes of the curves can be thought of as

directly comparable in terms of temperature values when the fluid con-
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are kept constent. The dimensionless wall temperatures are governed by
three parameters: the wall to fluid conductlivity parameter K, the chan-
nel aspect ratio y, and either the width of the heat generating region
relative to the channel width c¢/b, or the distance that the fuel ex-
tends past the corner e/b. The results id the figures illustrate the
Influence of each of the parameters.

Case I(a). - Heating extends all the way to the corner. - Fig. 4

shows the effects of varylng the aspect ratio (1 <y <) and the thermal
conductivity of the brosd wall (0 <K <) on the difference between the
dimensionless wall and bulk temperatﬂ%es when uniform heat generation
takes place over the entire width (c/b = 1) of the broad walls. As the
abscissa 1s followed from left to right, the curves extend along the
wall from the center of the long side to the corner; and then from the
corner to the center of the short slde. As an aid to underétanding the
figure, consider & set of channels that hgve the same width of the
broad sides 2b, and the same Q and kf, but with different spacings
2a. between the broad walls and different wall conductivities k, For
a fixed K, as the aspect ratio y increases (by a decrease in 2a),
the temperatures on the heated wall and the maximum tempersture, which
always occurs at the corner, decrease. The reason for the temperature
reductions (discussed in detail in ref. 3 for the cage X = 0) ig that
the heat flow paths from the heated walls to the bulk of the fluid are

shortened for larger 7.
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The pesk temperatures result from the low fluld veloclties in the
corner, which cause the wall temperatures to rise to compensate for the
poor convection. As expected, when ¥ has a fixed value, an increase
in KX causes the wall temperatures to become considerably more uniform,
and a substantial reduction in the peak temperature is obtained. This
results from the increased peripheral heat conduction, which causes
heat to flow from the hotter to the cooler regions of the walls and
thereby reduces the imposed heat flux to the fluid at the hot spots.

To obtain a physical appreciation for the magnitudes of the K
perameteryconsider a channel where the thicknese of the broed walls 1s
equal to one-fourth of the spacing between them.(w/Za = 1/4). If the
walls are aluminum and the coolant is water, K= 150. For the same
situation, but with walls made of stailnless steel, K 1s reduced to 13.
Finally, for & stainless-steel channel cooled by & liquid metal, K 1s
1l or less.

Some of the present results can be compared with those in ref. 7
(p. 385), where the Nusselt number is given for the constant-wall-
temperature condition in ducts with various aspect ratios. When Y
is large, the broad walls comprise most of the periphery, and when, in
addition, X 1is large, the condition of a constant-wall-temperature

duct 1is closely approximated. With the definitions

- hD n 4ab - Q T (

IR = S ————— f-ReioN = =1 T -0
ke’ NN 2T (e + D) *w T b
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there 1s obtained

Tw - Tb _ 4y
Q/4kr (1 + ¢)2 My (40)

For y = 10, the Nusselt number from ref. 7 1s 6.2 for constant wall tem-
perature, which gives (T, - T, )4ke/Q = 0.053 from eq. (40). Similarly
for y =20, Nu = 6.8 and (T, - T)4ke/Q = 0.027, and for y = 100,

Nu = 7.4 and (T, - T)4ke/Q = 0.0053. These valueg agree quite well
with the values 0.050, 0.025, and 0.0054, respectively, as computed

from eq. (37) for K —+ o along the broad side of the duct (0 <Y < 1),
as shown in fig. 4(b).

Case I(b). - Heating extends part way to the corner. - The next con-

dition to be consldered is the effect on the wall temperstures of remov-
ing the edge of the heated region a small distance (b - ¢) away from the
corner while maintaiﬁing the total heating per unit channel length Q,
a constanty  The result of narrowing the heat generating region c/b <1
is illustrated in fig. 5 for ducts having various aspect ratios and wall
conductivities.

In figs. 5(a) and (b), which are for 1y = lO“«aﬁd 20, respectively,
the case for K = 1 demonstrates the effect of c/b most cleawly.
The results for K = 1 are similar to those for zero wall conduction,

K

i

0 previqugly discussed in ref. 4. The most significant result for

il

v = 10 and 20 is the large influence exerted by small changes in c/b
from unity. As c/b is decreased from unity, the corner temperature

decreases sharply because of the smaller heat flux being imposed on the
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reglon of poor convection at the corner. When c¢/b 1s decreased to
about 0.96 for vy = 20 or 0.93 for 7y = 10, the maximm wall tempera-
ture shifts from the vicinity of the corner to the center of the broad
gide. The reason for this is the formation of a heat sink by the fluid
adjacent to the short side and the corner that drews hest away fram the
central region of the broad sides in a direcilon parallel to them.
When c/b~ 0.94 for t =10 and c¢/b~ 0.97 for v =20 the optimum
condition is achieved where the peak temperature is a minimum, and the
broad wall teméeratures are close to uniform. When K 1s increased
from 1 to either 5 or 25, the wall temperatures exhibit the same gen-
eral dependence on c/b as for K= 1, except that for higher X the
wall temperatures are more unif'orm.

In fig. 5(c), which is for an aspect ratio of 1, the behavior is
quite different from the previous results for y = 10 and 20. As
shown in fig. 4(a), when 7t = 1 the temperatures along the heated wall
are already quite uniform. Consequently, increasing K or removing
the heat source from the corner by changing from c/b =1 +to 0.96 has
a negligible effect on the wall—temperature/distribubion- Hence, for
a square configuration it is not advantageous to remove the fuel load-
ing from the corner region.

Case 11. - Heating extends beyond the corner into the side wall. -

Fig. 5 showed the effect of removing heat generation from the corner
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region, and fig. 6 now demonstrates the opposite situation where the
fuel extends beyond the corner into the side plate. Essentially this
amounts to providing an additional heat source at the corner that will
raise the peak temperature. The parameter e/a is the ratio formed by
dividing the distance that the fuel extends past the corner by the

half spacing between the plates. For a fixed value of K, an increase
in e/a provides more heating at the corner thereby resulting in a
higher peak temperature. As K 1s increased, the peak temperatures
and temperature gradients in the broad wall decrease rapidly. For a K
of 25, the temperature distribution is much more uniform, with the e/a
parameter then having only a minor effect.

Dependence of maximum wall temperature on y and X. - The location

and magnitude of the maximum wall temperature is of great practical im-
portance to avoid possible damage to the channel. Hence, 1t is of value
to assess in more detail the influence of the aspect ratio and the wall
conductivity parsmeter on the peak temperature. The maximum temperature
always occurs at the corner when the heating extends all the way to the
side wall c¢/b = 1 or into the side wall e/a > 0. To illustrate the
effect of r and K on the peak temperature, the case of c/b =1 1is
examined in more detail as shown in fig. 7. Each curve is for a differ-
ent X and gives the dependence of the maximum wall temperature on the
aspect ratio. For all K values, the peak temperature decreases sub-

stantially as the aspect ratio is increased to about 10 or 20, while
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beyond 20, the further decrease is small. The curves show that a lower
peak temperature can result for a channel of low conductivity if the
aspect ratio ié‘ kept high (e.g., K = 1, v = 20) than for a channel of
high X if y is low (e.g., K = w, v = 3). Results similar to these
are indicated for situations vhere c/b # 1 and e/a £ 0. Hence,

fig. 6 provides the significant conclusion that the optimum practical
aspect ratio for channels with any wall conductivity is in the range

vy =10 +to 20.

There is mo experimental information for laminar flow that can be
used for direct comparison with the present results. There have been
some experiments reported on turbulent heat transfer inside rectangular
channels that had internal heat generation on all four sides. In
ref. 10, & stainless-steel channel of aspect ratio 26.6 was cooled by a
turbulent flow of superheated steam, and the K was approximately 300.
In ref. 11, water was used to cool a stainless-steel channel of aspect
ratio 20, and the K was approximately 25. In both instances there
was an increase in wall temperature noted in the region adjacent to the
corner; however, detailed peripheral temperature traverses were not
given.

CONCLUSIONS

An analysi’s has been carried out to determine the temperatures in a

rectangular channel with heat generating broad sides and unheated

short sidesunder the conditions that peripheral heat conduction occurs
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in the broad sides. The heat conduction within the broad walls was formu-
lated in terms of an lntegral equation and coupled with the convective
energy equation within the fluid. The analytical solutions for the tem-
peratures were evaluated along the channel walls for several values of
the aspect ratid, thermal conductivity of the heated wall, and width of
the heat generating region on the broad side. The wall temperatures
provided the following conclusions:

1. Increasing the transverse conduction in the heated broad sides
produces a substantial decrease in the peak temperature and temperature
gradients along the broad sides.

2. For the®case where the heat generation occurs over the entire
width of the broad walls, the peak temperature decreases as the aspect
ratio is increased to about 20 for all values of the wall conductivity.
The peak temperature then decreases only slightly as aspect ratic is
further increased. This result indicates that an aspect ratio of about
20 1s the optimum for minimizing the peask temperature.

3. For ducts of large aspect ratio such as 10 and 20, removing‘the
region of heat generation a short distance away from the corner results
in substantial reductions in the peak temperature. With large wall
conductivity, this effect is small since the temperature distributions

are already almost uniform.
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4. Similarly, extending the fuel & finlte distance beyond the corner
can greatly Increase the peak temperature unless wall conductivity is
large.
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APPENDIX

SOLUTION FOR GP

The following is the solution for the speclal case of a rectangular

duct with the two broad sides uniformly heated and the two short sides

insulated (ref. 3):

4 22 2
ool B2 1Y o (2
n5cosh(7

n=1,3,5,...

+ (n_;r_[) Y sinh (&12‘1 Y)] cos 2-;-2(-)

where
-1
‘ o
G=|-X+ 16 _]:..tanh(.’.n..’.fx)
1z 5 5 2
m=l,3",5,...
1 2 2o
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oy ( YoY©)
00
cosh ( at x?
6, = R, - cos (nxY)
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Tn 3 2 my 2
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cosh (nmyY
cos X
® sinh fnny) (nsX) (46)

n—l, 33gese

where

m> n
m=1,3,5,..

L =G __(_-1_ :][2 tanh E-’Z‘x +l‘ﬂ] (A7)

For 6p s the reader is referred to ref. 3 since the expression is too
s .

lengthy to warrant repetition herein.
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Figure 1. - Typical rectangular cooling passage inside nuclear reactor.
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